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Abstract

Background: White matter hyperintensities (WMH), a marker of cerebral small

vessel disease and predictor of cognitive decline, are observed at higher rates in

persons with HIV (PWH). The use of cocaine, a potent central nervous system

stimulant, is disproportionately common in PWH and may contribute

to WMH. Methods: The sample included of 110 PWH on antiretroviral ther-

apy. Fluid-attenuated inversion recovery (FLAIR) and T1-weighted anatomical

MRI scans were collected, along with neuropsychological testing. FLAIR images

were processed using the Lesion Segmentation Toolbox. A hierarchical regres-

sion model was run to investigate predictors of WMH burden [block 1: demo-

graphics; block 2: cerebrovascular disease (CVD) risk; block 3: lesion burden].

Results: The sample was 20% female and 79% African American with a mean

age of 45.37. All participants had persistent HIV viral suppression, and the

median CD4+ T-cell count was 750. Nearly a third (29%) currently used

cocaine regularly, with an average of 23.75 (SD = 20.95) days in the past 90. In

the hierarchical linear regression model, cocaine use was a significant predictor

of WMH burden (b = .28). WMH burden was significantly correlated with

poorer cognitive function (r = �0.27). Finally, higher WMH burden was signif-

icantly associated with increased serum concentrations of interferon-c-inducible
protein 10 (IP-10) but lower concentrations of myeloperoxidase (MPO); how-

ever, these markers did not differ by COC status. Conclusions: WMH burden

is associated with poorer cognitive performance in PWH. Cocaine use and

CVD risk independently contribute to WMH, and addressing these conditions

as part of HIV care may mitigate brain injury underlying neurocognitive

impairment.

Introduction

Neurocognitive impairment (NCI) remains a prevalent

complication of HIV disease, even in patients with sus-

tained HIV viral suppression, with estimated prevalence

rates ranging from 15 to 55% across populations.1 In the

era of combination antiretroviral therapies (cART),

milder forms of HIV-associated neurocognitive disorders

predominate,2–6 but nevertheless have real-world impacts

on daily functioning and are predictive of increased mor-

bidity and mortality.7–13 These cognitive deficits correlate

with neuronal injury due to chronic HIV disease that

occurs through numerous mechanisms, including persis-

tent immune activation and low-grade inflammation.14–17

As persons with HIV (PWH) now have nearly average life

expectancies,18 normal aging processes and comorbid

conditions likely contribute to the development and

expression of NCI.

White matter hyperintensities (WMH), which have

been observed at higher rates in PWH,19–23 are associated

with NCI.24–26 The histopathology of WMHs is heteroge-

neous, including myelin pallor, demyelination and axonal

loss, and mild gliosis.27,28 The majority of WMH result

from chronic ischemia associated with cerebral small
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vessel disease, which can cause vascular hypertrophy and

microvascular remodeling.29–32 While the biological

mechanisms leading to WMH are not fully understood,

possible factors include chronic hypoperfusion, increased

permeability of the blood–brain barrier, vascular endothe-

lial dysfunction, and inflammatory responses.33 Studies

have linked WMH to circulating levels of inflammatory

markers, including tumor necrosis factor alpha (TNF-a),
interleukins (particularly IL-6), interferon c-induced pro-

tein 10 (IP-10, also called CXCL10), monocyte chemoat-

tractant protein 1 (MCP1, also called CCL2), and

myeloperoxidase (MPO).34–38

Aging and cardiovascular disease (CVD) risk factors

such as hypertension, diabetes, and smoking are the pri-

mary predictors of WMH in the general population39,40

and in PWH specifically.20,22,41,42 It is believed that

chronic immune activation and persistent low-level

inflammation associated with HIV disease may affect

microcirculation and contribute to increased risk for

WMH.19,43–45 WMH in PWH may also reflect legacy

effects of neuronal injury that occurred during untreated

phases of disease. One study reported that longer time

spent with a CD4+ T-cell count below 500 cells/lL (a

marker of immunosuppression) was predictive of total

WMH load,22 although most studies have found no rela-

tionship between HIV disease characteristics and

WMH.20,23,42,46,47 In PWH, WMH have been associated

with worse global cognitive functioning, although the spe-

cific domains affected varied across studies.22,41,42

Cocaine use is disproportionately common in PWH

and may contribute to neuronal injury. The most recent

surveillance by the CDC of adults with HIV reported past

year prevalence rates of 5% for non-injection cocaine and

3% for crack cocaine.48 By comparison, the past-year

prevalence of use among US adults was 2% for any form

of cocaine, including crack cocaine.49 Cocaine is a potent

central nervous system stimulant that has been linked to

increased risk of ischemic stroke and intracerebral

hemorrhage.50–52 Acute cocaine exposure causes a sudden

transient increase in blood pressure, which can rupture

leaky and weak vessels. Other mechanisms for cocaine-

induced lesions include cerebral arterial vasoconstriction,

atherosclerosis, vasculitis, disruption of blood–brain-
barrier integrity, and neuroinflammation.53–55 However,

the contribution of cocaine on WMH burden in PWH

has received little attention. One study found that a his-

tory of cocaine use disorder was not associated with

increased risk for WMH load in PWH,20 although the

recency and frequency of cocaine use were not reported.

WMH can be measured quantitatively using non-

invasive magnetic resonance imaging (MRI). Specifically,

T2-weighted fluid-attenuated inversion recovery (FLAIR)

imaging is the industry-standard sequence for delineating

WMHs. The total WMH volume is an important deter-

minant of their clinical relevance.56,57 The current study

quantified WMH burden in a sample of PWH who were

treated with cART and had sustained HIV suppression.

Our specific aims were to (1) investigate the independent

contribution of cocaine use to WMH, after accounting

for age and common CVD risk factors, (2) examine the

correlation of WMH volume to cognitive function, and

(3) explore the possible association of peripheral bio-

markers of immune activation and inflammation to

WMH load. We hypothesized that PWH who used

cocaine regularly would have a greater WMH burden,

and that WMH burden would correlate negatively with

global cognitive function. We further expected that an

inflammatory cascade would mediate the relationship

between cocaine use and WMH burden.

Materials and Methods

The data in this report were collected as part of a larger

project on neuroimaging and immunological features of

NCI in PWH.58 The study was approved by the Duke

Health Institutional Review Board, and all participants

provided written, informed consent.

Participants

PWH aged 18–59 years were recruited from infectious

diseases clinics in the Raleigh/Durham area of North Car-

olina, USA. Participants met the following criteria: stable

ART for >1 year, nadir CD4 cell count of ≤350 cells/mm3

or HIV infection of ≥5 years; and sustained viral suppres-

sion (plasma HIV RNA < 200 copies/mL) for >1 year.

Exclusion criteria included perinatal HIV infection;

<9 years of education; BMI > 40; English non-fluency or

illiteracy; severe learning disability; severe head trauma

with loss of consciousness >30 min and persistent func-

tional decline; serious neurological disorders not caused

by HIV, including stroke; acute CNS infection or chronic

CNS infection with residual symptoms; severe mental ill-

ness or acute psychiatric symptoms; systemic autoimmune

disease; inpatient hospitalization within 30 days; use of an

immunomodulatory medication, steroid, or antibiotic

within 30 days; contraindications to MRI; and other

underlying or uncontrolled medical illness with altered

cognition.

The sample was stratified by cocaine history. A positive

history (COC+) was defined by lifetime history of regular

use and ≥12 days of use in the past 90 days or a positive

urine screen, while a negative history (COC�) was

defined as no regular use in the past 10 years, no use in

the past 90 days, and a negative urine drug screen. Alco-

hol, cannabis, and nicotine use were allowed, and
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controlled substances such as benzodiazepines were per-

mitted if prescribed. For other illicit drugs of abuse, par-

ticipants were excluded for: a positive urine drug screen;

>2 days of use within 30 days; >2 years of regular use

within the past 20 years; and any regular use in the past

5 years.

Substance use assessment

The Addiction Severity Index-Lite (ASI-L), a semi-

structured interview, was administered to characterize

lifetime substance use and associated problems.59 Module

E of the Structured Clinical Interview for DSM-5 (SCID-

5) was used to assess substance use disorder symptoms.60

Frequency of use in the past 90 days for cocaine, mari-

juana, and other substances was facilitated with Timeline

Follow-Back methodology.61,62 A nine-panel urine toxi-

cology screen that tested for cocaine, amphetamine,

barbiturates, benzodiazepine, methamphetamine, opioids,

methadone, marijuana, and oxycodone assessed recent

drug use.

Clinical data

Participants provided a release for the study team to

obtain copies of their healthcare records. This informa-

tion was used to confirm no exclusionary conditions, and

to abstract relevant clinical data. HIV disease characteris-

tics included date of diagnosis, nadir and current CD4+

T-cell counts, current antiretroviral regimen, and most

recent plasma HIV viral load. The following clinical diag-

noses were coded as present or absent: diabetes, hyperten-

sion, hyperlipidemia, and any prior CVD such as

coronary artery disease and cardiomyopathy. Body mass

index (BMI) was calculated from weight and height mea-

sured at last clinical visit. Participants reported frequency

of smoking in the past 3 months. As in prior

studies,21,42,63 a composite CVD risk score was calculated

as the sum of the following risk factors: diabetes, hyper-

lipidemia, hypertension, CVD diagnosis, obesity

(BMI ≥ 30), and current smoking. Total scores ranged

from 0 to 6.

Neurocognitive function

Neuropsychological testing was administered by

Bachelor’s-level staff member under the supervision of a

licensed clinical psychologist. The 60-min battery of tests

spanned seven domains of cognitive function:

1. Attention: Paced Auditory Serial Addition Task-50—
total number correct64; WAIS-IV Digit Span subtest—
total number correct65; WAIS-IV Letter-Number

Sequencing subtest—total number correct65

2. Information Processing: Trail Making Test Part A—
number of seconds to completion66; Wechsler Adult

Intelligence Scale-IV (WAIS-IV) Coding subtest—total

number correct65; Stroop Color and Word Test color

naming score—total number of items completed67

3. Learning (immediate recall): Hopkins Verbal Learning

Test—Revised (HVLT-R)—total number of words

recalled on trials 1–368; Brief Visuospatial Memory

Test-Revised (BVMT-R)—total score for figures

recalled on trials 1–369

4. Memory (delayed recall): HVLT-R—total number of

words recalled on trial 468; BVMT-R—total score for

figures recalled on trial 469

5. Executive function: Stroop Color and Word Test inter-

ference score—difference between actual and predicted

score on the Color-Word trial67; Trail Making Test

Part B—number of seconds to completion66; Wiscon-

sin Card Sorting Test-64 (WCST)—total errors70

6. Verbal fluency: FAS letter fluency—total number of

words generated; and category fluency—total number

of animals generated71

7. Motor skills: Grooved Pegboard Test dominant and

non-dominant hand—number of seconds to

completion72

Using published normative data,64,65,73 raw scores for

each test were converted to demographically corrected T-

scores (M = 50, SD = 10). Domain T-scores were com-

puted by averaging the T-scores for the tests within each

domain, and a global T-score was computed by averaging

the 7 domain T-scores.

MRI data acquisition and processing

All MRI scans were performed at Duke University Hospi-

tal using a 3.0T GE Discovery MR750 scanner with an 8-

channel head coil. High-resolution T1-weighted images

were recorded using a spoiled echo sequence (voxel

size = 1 mm3, repetition time [TR] = 8.16 ms, echo time

[TE] = 3.18 msec, field of view [FOV] = 256 mm2, 12°
flip angle, 168 interleaved slices). Fast-spin echo T2-

weighted FLAIR images were acquired in oblique axial

orientation of the full brain with the following parame-

ters: voxel size = 0.4 mm2 9 5 mm, TR = 10000 msec,

TE = 128 msec, TI = 2337 msec, FOV = 220 mm2, 111°
flip angle, 27 slices. Total acquisition time for FLAIR was

3:30 min.

Cortical reconstruction and volumetric segmentation

of the T1-weighted images was done with the FreeSurfer

image analysis suite version 6.0 to obtain estimated total

intracranial volume (eTIV).74 WMH were detected using

the Lesion Segmentation Toolbox (LST) version 3.0.0, a

MATLAB tool, implemented in SPM12 version 2.75,76

This automated tool has been found to reliably and
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efficiently identify WMH across a range of neurologic

conditions.76–79 Bias-corrected FLAIR images were first

coregistered to normalized T1-weighted anatomical

images, which were segmented into cerebrospinal fluid,

gray matter, and WM maps using SPM12 (http://www.

fil.ion.ucl.ac.uk/spm/software/spm12). This information

was combined with the coregistered FLAIR image to

provide a lesion belief map for each class of tissue using

the automated lesion growth algorithm (LGA) of LST.

These maps were thresholded with a lesion probability

threshold (j) to generate an initial binary lesion map

that was subsequently grown along voxels that appear

hyperintense on the FLAIR image. To define the optimal

threshold, T1 and FLAIR images from 11 randomly

selected participants were manually segmented by a neu-

roradiologist, blinded to COC status, to establish ground

truth lesion masks. A range of lesion volumes (1.34–
24.3 mL; M = 6.51, SD = 8.33) was included in the

training set. These same cases were then segmented at

j = 0.10, j = 0.20, and j = 0.30 using the LGA algo-

rithm. Comparing the dice similarity coefficients (DSC)

between the manually segmented images and the LGA-

generated lesion belief maps, it was determined that a

j = 0.10 was the optimal threshold (average

DSC = 0.32; 100% specificity, 29% sensitivity). This was

confirmed via visual inspection of the segmentation

results. The DSC values are in line with other studies

with overall low lesion loads, as errors in the segmenta-

tion have a greater impact when the lesion load is

low.80–82 The remainder of the FLAIR data were then

processed with LGA to derive whole brain WMH vol-

umes for each participant. The WMH volume in millili-

ters (mL) was normalized to the eTIV to account for

inter-individual variations in brain size.83 These values

were log10 transformed for analyses. As suggested by

prior studies,84,85 lesion load was categorized based on

total WMH volume: minimal (<1 mL), low (≥1 through

<5 mL), moderate (5–15 mL), and high (>15 mL). Fig-

ure 1 shows group frequency maps for the low, moder-

ate, and high WMH lesion load classifications.

Peripheral inflammatory biomarkers

Non-fasting blood samples were collected by peripheral

venipuncture immediately following the MRI or on a sub-

sequent day. Plasma and serum were purified using stan-

dard procedures, and then, supernatant was pipetted into

aliquots and stored at �80°C until time of assay. A

selected set of 10 biomarkers representing various compo-

nents of the inflammatory cascade were measured using

commercially available enzyme-linked immunosorbent

assay (ELISA) kits. All analytes were measured in dupli-

cate following manufacturers’ instructions. Serum samples

were assayed on the Luminex MagPix instrument using

commercially available multiplex kits from EMD Milli-

pore (Burlington, MA) to measure concentrations of IL-4,

IL-6, IL-8, IL-13, and TNFa (Milliplex� Human High

Sensitivity T Cell) and MPO (Milliplex� Human CVD

Magnetic Bead Panel 2). Single ELISA assays were used

for the following analytes: MCPI/CCL2 (serum; Human

Uncoated; Thermo Fisher Scientific, Waltham, MA, USA),

IP-10/CXCL10 (plasma; LEGENDplexTM; Biolegend, San

Diego, CA, USA), sCD14 (plasma; Quantikine�, R&D

Systems, Minneapolis, MN, USA), and sCD163 (plasma;

Quantikine�; R&D Systems). Laboratory personnel were

blinded as to the demographic and COC status of the

participants. Four people were missing blood data, and

one person was excluded because values were >3 SD

above the mean on >3 biomarkers. The values for the

cytokines/chemokines were log10 transformed to improve

normality.

Data analysis

Descriptive statistics were used to characterize the sample

on demographic, HIV disease, CVD risk characteristics,

and inflammatory biomarkers. We used two-tailed inde-

pendent samples t-tests, Mann–Whitney U-tests, chi-

squared tests, and Fisher’s exact tests, as appropriate, to

compare COC+ and COC� participants. A hierarchical

multiple regression model was conducted to identify the

independent association of cocaine use on WMH, after

accounting for common risk factors. Variables were

entered in a series of blocks in the following order: demo-

graphics (age in years, biological sex, race), clinical factors

(CVD risk score, nadir and current CD4+ count, years

since HIV diagnosis), and substance use (alcohol, mari-

juana, and cocaine; yes/no). A partial correlation was used

to examine the strength of the relationship between

WMH load and global cognitive function (T-score) con-

trolling for age. Finally, a series of analysis of covariance

(ANCOVA) models examined the association of WMH bur-

den to each biomarker. Lesion load was the between-

subjects factor defined as minimal, low, moderate, or

high, controlling or age. All analyses were conducted in

SPSS 28.0.

Results

Sample characteristics

The sample included 32 COC+ and 78 COC� partici-

pants (Table 1). They were primarily male at birth

(84%) and African American (72%) and had a mean

age of 45.37 years (SD = 9.34). Compared to partici-

pants in the COC� group, COC+ participants were
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Figure 1. Group frequency maps showing the WMH distributions for participants categorized as having low, moderate, and high WM lesion

loads.
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significantly older and less educated, and they were more

likely to identify as African American. Participants had

been diagnosed with HIV disease for a mean of

14.60 years (SD = 7.60), with no difference by COC sta-

tus, but COC+ participants had significantly lower nadir

and current CD4 T-cell counts compared to COC� par-

ticipants. Participants had been on ARV regimens for

12.33 years on average (SD = 6.82). Current ARV regi-

mens were similar across the groups, with the majority

(72%) being on an integrase strand transfer inhibitor-

based combination and 24% being on a regimen con-

taining a protease inhibitor. The number of CVD risk

factors ranged from 0 to 5, with a mean of 1.56

(SD = 1.15), and there was no difference by COC status.

However, COC+ were more likely to currently smoke

cigarettes, while COC� were more likely to have a BMI

in the obese range.

Participants in the COC+ group had been using

cocaine regularly for an average of 18.28 years

(SD = 10.70). The majority (66%) reported smoking as

their primary route of administration; all others reported

nasal administration. In the 90 days prior to enrollment,

they had used cocaine on an average of 23.75 days

(SD = 20.95). While the overall prevalence of use was

high for current alcohol (75%) and cannabis (48%),

COC+ participants were significantly more likely than

COC� participants to have used these substances (both

P < 0.05).

Predictors of WMH burden

The median WMH volume was higher for COC+
(Median = 1.9e-6, IQR = 3.4e-6; Min = 8.1e-8, Max =
1.5e-5,) than for COC� (Median = 7.8e-7, IQR = 1.3e-6,

Min = 1.1e-8, Max = 9.0e-6) (U = 1695, P = 0.003).

Figure 2 illustrates the proportion of participants in each

group categorized by WMH burden (v2(2) = 13.48,

P = 0.004). Compared to the COC� group, COC+ par-

ticipants were more likely to be categorized as high (9%

vs. 0%) and moderate (25% vs. 9%) lesion burden and

less likely to have minimal lesion burden (28% vs. 44%).

Table 2 summarizes the results of the hierarchical regres-

sion model predicting WMH volume. The final regression

model was statistically significant [(F (10, 99) = 3.44,

P < 0.001, R2 = 0.26). Step 1 included demographic fac-

tors, and age was associated with higher WMH volume.

Step 2 added clinical factors. As expected, CVD risk score

was associated with higher WMH volume. None of the

HIV clinical variables were predictive. Step 3 added the

substance use factors, and cocaine was associated with

Table 1. Sample characteristics by cocaine use status.

COC+ (N = 32) COC� (N = 78) Statistic P-value

Demographic characteristics

Male sex, n (%) 27 (84%) 62 (79%) Χ2 (1) = .35 0.554

Age in years, M (SD) 50.00 (8.58) 43.47 (9.01) t (108) = 3.50 <0.001

African American race, n (%) 28 (88%) 51 (65%) Χ2 (1) = 5.48 0.019

Education in years, M (SD) 12.69 (1.96) 14.32 (2.60) t (108) = �3.20 0.002

Global cognitive function, M (SD) 45.43 (6.66) 46.10 (6.49) t (108) = �0.49 0.626

HIV disease characteristics

Years since diagnosis 14.97 (7.13) 14.44 (7.83) t (108) = 0.33 0.742

Nadir CD4+ T-cell, Md (IQR) 76 (181) 238.5 (273) U = 774.5 0.002

Current CD4+ T-cell, Md (IQR) 460 (504) 814.5 (380) U = 615 <0.001

Years on ART, M (SD) 11.81 (6.71) 12.54 (6.90) t (107) = �0.50 0.616

Current ARV regimen, n (%)

NRTI-only 3 (9%) 5 (6%) Χ2 (3) = 0.38 0.945

NNRTI-based 5 (16%) 14 (18%)

INSTI-based 23 (72%) 56 (72%)

Other combination 1 (3%) 3 (4%)

On a protease inhibitor, n (%) 10 (31%) 16 (21%) Χ2 (1) = 1.45 0.229

CVD risk factors

Diabetes, n (%) 3 (9%) 9 (12%) FET 1.000

Hyperlipidemia, n (%) 7 (22%) 23 (29%) Χ2 (1) = 0.66 0.416

Hypertension, n (%) 16 (50%) 24 (31%) Χ2 (1) = 3.63 0.057

Obesity, n (%) 5 (16%) 33 (42%) Χ2 (1) = 7.14 0.008

Cigarette smoking, n (%) 24 (75%) 24 (31%) Χ2 (1) = 18.05 <0.001

Prior CVD, n (%) 2 (6%) 2 (3%) FET 0.578

INSTI, integrase strand transfer inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor.
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higher WMH volume. In the final model, age, CVD risk,

and cocaine use were independent predictors of WMH

burden.

Relationship between WMH and cognitive
function

WMH volume was negatively correlated with global T-

score (rpartial = �0.27, P = 0.004), suggesting that greater

WMH burden is associated with poorer cognitive func-

tion (Fig. 3). The strength of the correlation was similar

for the COC+ (rpartial = �0.338, P = 0.063) and COC�
(rpartial = �.244, P = 0.032) groups. In an exploratory

analysis, we examined the correlation with domain

T-scores. WMH volume was negatively associated with

executive function (r = �0.19, P = 0.049), learning

(r = �0.29, P = 0.002), and memory (r = �0.33,

P < 0.001).

Exploratory correlations of inflammatory
biomarkers and WMH burden

After accounting for age, the COC group had comparable

levels for all of the inflammatory markers except IL-13

(Table 3). Table 4 summarizes the results of the ANCOVA

models comparing biomarker values across WMH catego-

ries. Controlling for age, concentrations of IP-10 and

MPO were significantly different across the four categori-

zations. Specifically, participants who were categorized as

having moderate or high lesion burden had the highest

concentrations of IP-10 and the lowest concentration of

MPO. However, the group differences did not pass family

Figure 2. Stacked bar graphs show the proportion of participants in each COC group categorized by white matter burden.

Table 2. Hierarchical linear regression model predicting WM lesion

burden.

Step 1 Step 2 Step 3

Demographics

(b)

Clinical

factors (b)

Substance

use (b)

Age in years 0.37*** 0.30* 0.17

Male sex 0.02 0.04 0.09

African American

race

0.11 0.03 �0.04

CVD risk score 0.29** 0.29**

Nadir CD4 T-cell

count

�0.03 �0.05

Current CD4 T-cell

count

�0.02 0.06

Years since HIV

diagnosis

�0.09 �0.05

Alcohol use �0.08

Marijuana use �.12

Cocaine use .28*

Block F = 5.66**

R2 = 0.14

F = 3.85***

R2 = 0.21

F = 3.44***

R2 = 0.26

b, standardized coefficients; R2, proportion of explained variance in

WM lesion burden.

*P < 0.05.

**P < 0.01.

***P < 0.001.
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wise error correction for multiple comparisons. Since IP-

10 and MPO did not differ by COC status, we did not

pursue mediation analysis.

Discussion

This study investigated the contribution of ongoing

cocaine use to WMH in persons with treated HIV dis-

ease who had sustained viral suppression. Our principal

finding is that cocaine use in PWH was associated with

greater WM lesion burden, even after accounting for age

and CVD risk factors. Moreover, higher WM lesion bur-

den was correlated with poorer cognitive function,

underscoring the role of vascular processes in the devel-

opment of NCI in PWH independent of COC status.

While chronic HIV disease may contribute to the devel-

opment of cerebral small vessel disease, it appears that

age, CVD risk, and cocaine are robust predictors of

WMH with high relevance for PWH. Finally, circulating

neurotoxic chemokines linked to endothelial functioning

were associated with WM lesion burden, suggesting a

potential role of inflammatory processes in the patho-

genesis of cerebrovascular insults in the context of

chronic HIV infection.

Figure 3. The scatterplot shows the negative correlation between WM lesion burden and global T-score across the full sample. The standardized

residuals from the partial correlation controlling for age are plotted. The individual data points are coded by COC status to illustrate that the

relationship was similar across the groups.

Table 3. Biomarkers by cocaine use status, controlling for age.

Peripheral

biomarkers

Estimated marginal means, M

(SE) ANCOVA models

COC+

(N = 32)

COC�
(N = 78)

F-

value

P-

value

sCD163, ng/mL 442.96 (39.20) 444.51 (25.44) <0.01 0.974

sCD14, lg/mL 1.38 (0.08) 1.33 (0.05) 0.27 0.607

TNF-a, pg/mL 0.95 (0.03) 0.93 (0.02) 0.41 0.525

IL-6, pg/mL 0.09 (0.09) 0.26 (0.06) 2.52 0.116

IL-4, pg/mL 0.68 (0.10) 0.87 (0.06) 2.43 0.122

IL-13, pg/mL 0.07 (0.12) 0.38 (0.08) 4.46 0.037

IL-8, pg/mL 1.01 (0.05) 1.04 (0.03) 0.37 0.546

IP-10, pg/mL 0.92 (0.13) 0.90 (0.09) 0.03 0.874

MCP1, pg/mL 2.01 (0.07) 2.05 (0.05) 0.24 0.625

MPO, lg/mL 1.00 (0.12) 0.91 (0.08) 0.29 0.589
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This study was specifically designed to test the effects

of cocaine on health outcomes in PWH, comparing indi-

viduals with ongoing cocaine use to those with no history

of substantive cocaine use. Our results support the inde-

pendent role of ongoing cocaine use on burden of WMH.

A recent study did not find an association between

cocaine use and WMH in PWH, but groups were defined

by a past history of cocaine use disorder rather than cur-

rent use.20 Acute cocaine administration inhibits catechol-

amine reuptake at sympathetic nerve terminals, with

potent vasoconstrictive effects.86 This persistent hypoper-

fusion can result in ischemic damage to WM.87,88 Future

research is needed to empirically test whether recovery

from cocaine use disorder mitigates or reverses the effects

of past cocaine use on WMH burden.

Consistent with the extensive literature on cerebral

small vessel disease,39,89 CVD risk was strongly associated

with WMH. Interestingly, cocaine use was unrelated to

overall CVD risk score, suggesting that CVD risk did not

mediate the relationship between cocaine and WMH bur-

den. COC+ participants were more likely to smoke ciga-

rettes but also less likely to have a BMI in the obese

range, balancing out overall risk score. However, there

was a trend for COC+ participants to have a higher prev-

alence of hypertension. While the link between chronic

cocaine use and CVD risk is well established,90,91 several

factors likely contributed to our results. First, the preva-

lence of CVD risk factors was high overall, as HIV disease

is associated with increased risk.92,93 Second, our scale did

not account for severity of each risk factor (e.g., con-

trolled versus uncontrolled disease). Third, a history of a

cerebrovascular events, such as stroke, was an exclusion

criterion for the study, and persons who used cocaine

were more likely to be excluded for this reason. While

our exclusions may limit the generalizability of findings

with respect to prevalence of CVD risk, it allowed us to

better isolate the effects of cocaine on WMH.

Despite prior reports that HIV disease confers an ele-

vated risk of WMH,19–23 the pathophysiology remains

uncertain. Consistent with other studies,20,23,46,47 we

found no relationship between WMH and HIV disease

characteristics, such as time since diagnosis and CD4

counts of immune function. Given our inclusion criteria,

study participants were fairly homogeneous in terms of

their HIV disease; all had a diagnosis for >5 years and/or

a low nadir CD4 suggestive of long-standing disease and

were on combination ARV with viral suppression for

>1 year. COC+ participants did have a history of more

severe immunosuppression and less robust immune

reconstitution, but these differences did not account for

the effects of cocaine on WMH.

At the cellular level, cerebral small vessel disease is

believed to result from endothelial dysfunction and subse-

quent exposure of the arterial vessel wall, making it sus-

ceptible to thrombosis.35,94 Although our analyses were

exploratory, we found that concentrations of IP-10, a che-

mokine implicated in the induction of leukocyte migra-

tion to the site of inflammation,95,96 were associated with

higher WMH burden. IP-10 is believed to inhibit endo-

thelial healing,97 and it has been suggested as a marker of

thrombosis.98,99 We also found that MPO, an inflamma-

tory enzyme, was lower in participants with higher WMH

burden. MPO is expressed following acute neuronal

injury, triggering the production of the bactericide hypo-

chlorous acid, a strong oxidant that can cause local tissue

damage and amplify the inflammatory cascade.100,101 Ele-

vated MPO levels are associated with inflammation and

oxidative stress and are predictive of CVD risk, including

thrombosis and stroke.102 One study of stroke-free adults

found that elevated MPO was associated with greater bur-

den of WMH.103 However, an analysis of >1700 adults

enrolled in the Framingham Heart Study found that

WMH and silent cerebral infarcts were associated with

lower MPO while cerebral microbleed was associated with

Table 4. Biomarker values and association to WMH categorization.

Peripheral biomarkers

Estimated marginal means, M (SE) ANCOVA models

Minimal N = 41 Low N = 48 Moderate N = 16 High N = 3 F-value P-value

sCD163, ng/mL 419.14 (34.19) 426.84 (30.59) 560.22 (59.32) 555.91 (124.41) 1.76 0.160

sCD14, lg/mL 1.34 (0.07) 1.37 (0.06) 1.26 (0.12) 1.47 (0.25) 0.35 0.792

TNF-a, pg/mL 0.93 (0.03) 0.92 (0.03) 0.98 (0.05) 0.98 (0.10) 0.45 0.721

IL-6, pg/mL 0.24 (0.08) 0.17 (0.07) 0.15 (0.13) 0.55 (0.28) 0.72 0.543

IL-4, pg/mL 0.75 (0.09) 0.82 (0.08) 0.85 (0.15) 1.31 (0.32) 0.95 0.418

IL-13, pg/mL 0.28 (0.11) 0.28 (0.10) 0.25 (0.19) 0.65 (0.41) 0.29 0.829

IL-8, pg/mL 1.05 (0.04) 0.98 (0.04) 1.14 (0.08) 1.25 (0.16) 2.00 0.119

IP-10, pg/mL 0.79 (0.11) 0.86 (0.10) 1.18 (0.20) 1.97 (0.41) 3.13 0.029

MCP1, pg/mL 1.95 (0.06) 2.08 (0.06) 2.12 (0.11) 2.24 (0.24) 1.03 0.385

MPO, lg/mL 1.15 (0.11) 0.85 (0.10) 0.80 (0.18) 0.11 (0.39) 3.02 0.033
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higher MPO.38 The authors suggested that different

inflammatory pathways may be involved in the pathogen-

esis of ischemic versus hemorrhagic MRI markers. The

mechanism underlying the lower levels of circulating

MPO in persons with higher WMH is uncertain but is

consistent with the hypothesis that MPO deficiency, via a

diminished antioxidant response, may promote ischemic

neuronal injury.104,105 Since there were no differences in

the levels of these inflammatory biomarkers, the potential

mechanisms do not appear to mediate the effects of

cocaine on WMH.

Strengths of this study include our use of comprehen-

sive assessments to characterize the sample and rigorous

eligibility criteria related to both substance use and HIV

disease to minimize confounds and maximize power.

Our study also has some limitations. First, we did not

include an HIV-negative comparison group because the

goal of the larger project was to identify neural correlates

of NCI in PWH. Second, the sample size of 110 is rela-

tively modest, but the study was designed specifically to

isolate the effects of cocaine on HIV-related outcomes.

With clearly delineated groups, our power to detect dif-

ferences attributed to cocaine use was strengthened.

Third, we used a research-domain automated pipeline

for lesion segmentation, as manual delineation of WM

lesions is labor intensive with considerable inter- and

intra-rater variability.106 While the LGA method has

been found to be valid and robust,107–109 our own data

suggested high specificity but low sensitivity, so we may

have underestimated WMH burden in our sample. Fur-

thermore, the lesion segmentation toolbox we used did

not quantify the location of the WMH. Visual inspection

of the FLAIR images revealed that most large lesions

were periventricular, consistent with prior studies in HIV

disease,20 but deep WMH were also common although

generally smaller. Recent studies suggest that sub-

classifying WMH according to location and severity may

reveal more specific information about NCI.110 Fourth,

our study did not assess all possible relevant outcomes

and constructs that may contribute to WMH burden.

For example, we only examined WMH, rather than the

full-spectrum of cerebral small vessel disease. While our

analysis did evaluate some social determinants of health

outcomes, there are likely a host of other important

socioeconomic factors that our analysis did not consider,

such as food insecurity and poverty. Finally, our cross-

sectional analysis does not allow for causal inferences,

and we cannot exclude the possibility of residual

confounding.

Our principal finding is that PWH who use cocaine

have higher WM lesion burden, even after accounting for

CVD risk factors, that contribute to cognitive impair-

ment. While the relative burden of WMH remained

modest for most participants, these lesions represent only

the end of a continuous spectrum of WM injury and

neurodegeneration.111,112 As the sample was relatively

young, with a mean age of 45, these WMH may portend

future cerebrovascular events, vascular dementia, and

frailty as PWH age. Clinically, as we observed, even small

lesion load can predict cognitive impairment in middle-

age cognitively healthy adults.113 Longitudinal studies can

help identify patients with progressive changes in brain

structure and integrity, and ultimately determine the clin-

ical significance of WMH observed in PWH. In sum,

given the deleterious role of cocaine use in promoting

neural injury and NCI in PWH, our results reinforce the

importance of substance use screening for all patients

receiving HIV care and referral to treatment and support

services when indicated to minimize additional WM

injury that may exacerbate NCI.
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